Journal of Organometallic Chemistry, 250 (1983) 517-536 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

STRUKTURDYNAMISCHE ORGANOMETALL-KOMPLEXE

III *. SYNTHESE, STRUKTUR UND BINDUNGSVERHÄLTNISSE DER KOMPLEXE (η^{5} -C₅H₅)Pd(η^{1} -C₅H₅)PR₃

HELMUT WERNER*, HANS-JUERGEN KRAUS

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

ULRICH SCHUBERT, KLAUS ACKERMANN

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-8046 Garching (B.R.D.)

und PETER HOFMANN

Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestrasse 42, D-8520 Erlangen (B.R.D.)

(Eingegangen den 30. November 1982)

Summary

The complexes $(\eta^5 - C_5 H_5)Pd(\eta^1 - C_5 H_5)PR_3$ which are prepared from [Cl(PR₃)- $Pd_{2}(\mu$ -OCOCH₃)₂ and TlC₅H₅ are fluxional in solution. According to the ¹H and ¹³C NMR spectra at various temperatures, two dynamic processes occur. The process with the higher activation energy is a π/σ (η^5/η^1) exchange of the two different cyclopentadienyl ligands, whereas the second one with the lower activation energy presumably is a metallotropic rearrangement (1,2-shift). The coalescence temperature for the η^5/η^1 exchange depends on the size of the phosphine. The X-ray structural analysis of $(C_5H_5)_2$ PdPPr¹ proves that it exists as a "frozen" $\eta^5 + \eta^1$ structure in the crystal with the palladium approximately in a square-planar coordination. The η^5 -bonded cyclopentadienyl ring shows some unusual bonding patterns which are obviously electronic in nature. EHT-MO calculations for $(\eta^{5}-\eta^{5})$ $C_{s}H_{s}$)PdCH₃(PH₃) indicate that in this model system alternating C-C distances in the ring and a stronger bond of the metal to one of the five carbon atoms of the C,H, ligand are to be expected. The calculations suggest that in similar complexes possessing a six-electron donor ligand like $C_5H_5^-$ and a metal fragment which is isolobal to PdCH₃(PH₃)⁺, analogous distortions should be observed. Some reactions of the compounds $(\eta^5 - C_5 H_5) Pd(\eta^1 - C_5 H_5) PR_3$ are described.

^{*} II. Mitteilung siehe Ref. 1.

Zusammenfassung

Die Komplexe $(\eta^5 - C_5H_5)Pd(\eta^1 - C_5H_5)PR_3$, die aus $[Cl(PR_3)Pd]_2(\mu - OCOCH_3)_2$ und TlC₅H₅ synthetisiert werden, zeigen in Lösung ein fluktuierendes Verhalten. Aufgrund der temperaturabhängigen ¹H- und ¹³C-NMR Spektren sind zwei dynamische Prozesse nachweisbar. Der Prozess mit der grösseren Aktivierungsenergie ist ein π/σ - (oder η^5/η^1 -)-Austausch der beiden unterschiedlich gebundenen Cyclopentadienylliganden, der Prozess mit der kleineren Aktivierungsenergie vermutlich eine metallotrope Umlagerung (1,2-Verschiebung). Die Koaleszenztemperatur für den η^5/η^1 -Austausch ist von der Grösse des Phosphans abhängig. Wie die Röntgenstrukturanalyse von $(C_5H_5)_2$ PdPPrⁱ₃ beweist, liegt im Kristall eine "eingefrorene" $\eta^5 + \eta^1$ -Struktur vor, in der das Palladium annähernd quadratisch-planar koordiniert ist. Der η^5 -gebundene Fünfring weist einige ungewöhnliche Bindungsparameter auf, die offensichtlich elektronisch bedingt sind. Wie EHT-MO-Rechnungen für die Modellverbindung $(\eta^5-C_5H_5)PdCH_3(PH_3)$ zeigen, ist eine Bindungslängenalternanz im η^5 -C₅H₅-Liganden sowie eine verstärkte Bindung des Metalls an eines der fünf C-Atome des Rings zu erwarten. In vergleichbaren Komplexen, die $C_5H_5^-$ oder einen anderen potentiellen Sechselektronendonor und ein zu PdCH₃(PH₃)⁺ isolobales Fragment enthalten, sollten ähnliche Verzerrungen vorliegen. Einige Reaktionen der Verbindungen $(\eta^5-C_5H_5)Pd(\eta^1-C_5H_5)PR_3$ werden beschrieben.

Einleitung

Mit der Synthese der Zweikernkomplexe $(C_5H_5)_2Pd_2(PR_3)_2$, in denen eine M_2 -Einheit sandwichartig von zwei Fünfringliganden umgeben ist, war uns kürzlich der Zugang zu einer neuen Klasse von Bis(cyclopentadienyl)metall-Verbindungen gelungen [2–4]. Zu ihrer Darstellung geht man am besten von den Palladium(II)-Komplexen [Cl(PR_3)Pd]_2(\mu-OCOCH_3)_2 aus und setzt diese mit einem Überschuss an TlC₅H₅ um. Nach unseren Vorstellungen sollten sich dabei nach Spaltung der Acetatbrücken und Substitution von Cl und CH₃CO₂ gegen C₅H₅ die Zwischenverbindungen (η^5 -C₅H₅)Pd(η^1 -C₅H₅)PR₃ bilden und diese nach Homolyse der Pd(η^1 -C₅H₅)-Bindung zu den Zweikernkomplexen reagieren [4].

Es war das Ziel der vorliegenden Arbeit, die genannten Zwischenverbindungen zu isolieren. In früheren Untersuchungen hatten wir uns bereits darum bemüht, analoge Nickelkomplexe der allgemeinen Zusammensetzung $(\eta^5-C_5H_5)Ni(\eta^1-C_5H_5)L$ (L = PR₃, P(OR)₃, CNR etc.) zu fassen [5], die bei den Umsetzungen von Ni(C₅H₅)₂ mit L und von C₅H₅Ni(L)Cl mit MC₅H₅ (M = Na, Tl) intermediär auftreten sollten [6-8]. Dies war jedoch nicht gelungen. Im Fall des Palladiums versprachen wir uns mehr Erfolg, da wir inzwischen gefunden hatten, dass Cyclopentadienylverbindungen des Typs (η^3 -RC₃H₄)Pd(η^1 -C₅H₅)PR₃ isolierbar und unter Normalbedingungen auch kinetisch hinreichend stabil sind [1,9].

Darstellung und Eigenschaften der Komplexe $(\eta^5-C_5H_5)Pd(\eta^1-C_5H_5)PR_3$

Die Reaktionen der Acetat-verbrückten Zweikernverbindungen Ia-Ig mit TlC_5H_5 im Molverhältnis von ca. 1/4.4 ergeben in Benzol bei Raumtemperatur in sehr guten Ausbeuten die Bis(cyclopentadienyl)phosphanpalladium-Komplexe IIa-IIg (Gl.1). Es sind dunkelgrüne, kurzzeitig an Luft handhabbare Feststoffe, die in den meisten organischen Solventien gut löslich und bei -20° C längere Zeit haltbar sind.

Die Zusammensetzung von IIa-IIg ist durch Elementaranalysen gesichert. Die Massenspektren zeigen das Molekülion mit relativ hoher Intensität und übereinstimmend das Teilchen PdPR₃⁺ als intensitätsstärkstes Bruchstück. Daraus kann man schliessen, dass unter den Messbedingungen die Spaltung einer $Pd-C_{s}H_{s}$ -Bindung leichter als die Spaltung einer Pd-PR₃-Bindung erfolgt. Es fällt jedoch auf, dass das Ion $Pd(C_5H_5)_2^+$ mit relativen Intensitäten von 7-33% auftritt, was insofern bemerkenswert ist, als ein gesicherter Nachweis für die Existenz der Neutralverbindung $Pd(C_{5}H_{5})$, ("Palladocen") bis heute noch fehlt [10].

In den 'H-NMR-Spektren von IIa-IIg beobachtet man für die 10 Protonen der beiden Cyclopentadienylliganden nur ein scharfes Singulett (siehe Fig. 1). Kühlt man die Probe (in Toluol- d_8) langsam ab, so verbreitert sich dieses Signal, bis es bei der Koaleszenztemperatur (in Fig. $1 - 29^{\circ}$ C) praktisch im Untergrund verschwindet. Bei weiterem Abkühlen treten dann im Bereich der C₅H₅-Protonen zwei Signale gleicher Intensität auf, deren Linienbreiten jedoch verschieden sind. Aufgrund der chemischen Verschiebung [11] ordnen wir das Signal bei tieferem Feld (δ 6.2-6.3) den Protonen des σ (oder η^1)-gebundenen Fünfrings und das Signal bei höherem Feld (δ 5.1–5.3) den Protonen des π (oder η^5)-gebundenen Fünfrings zu.

Für IId wird - wie Fig. 1 zeigt - das Signal bei δ 5.10 unterhalb - 50°C zunehmend schärfer und lässt bei -79° C eine PH-Kopplung von 1.8 Hz erkennen; gleichzeitig tritt eine Verbreiterung des Signals der η^1 -C_sH_s-Protonen (bei δ 6.22) ein. Im Fall von IIf - über dessen dynamisches Verhalten wir bereits kurz berichteten [12] - ist für dieses Signal bei etwa - 80°C gerade die Koaleszenztemperatur erreicht. In den Spektren von IIa-IIc und IIe ist selbst bei -80° C das Signal der η^{1} -C₅H₅-Protonen noch relativ scharf, ausserdem zeigt das Signal der η^5 -C_sH_s-Protonen bei δ ~ 5.25 keine PH-Kopplung. Bei weiterer Abkühlung der Toluol- d_8 -Lösungen fallen die Komplexe IIa-IIg aus; Zugabe von CDCl₃ führt zur Spaltung der Pd- $(\eta^{l}$ - C_H_{1} -Bindung.

Das ¹³C-NMR-Spektrum von IIf ist ebenfalls stark temperaturabhängig. Bei + 35°C findet man (in Toluol- d_8) - analog wie im ¹H-NMR-Spektrum - nur ein scharfes Signal für die 10 Kohlenstoffatome der Cyclopentadienylringe bei δ 106.31, das sich beim Abkühlen auf -30° C in zwei unterschiedlich breite Signale (δ 100.63

Fig. 1. ¹H-NMR-Spektren von IId (im Bereich der C_5H_5 -Protonen) bei verschiedenen Temperaturen, in Toluol- d_8 .

TABELLE 1

¹H- UND ³¹P-NMR-DATEN DER KOMPLEXE IIa-IIg, BEI RAUMTEMPERATUR IN TOLUOL-*d*₈

Kom- plex	$\delta(C_5H_5)$ (ppm)	δ(PAlkyl) (ppm)	J(PH) (Hz)	δ(PC ₆ H ₅) (ppm)	$\delta(PR_3)$ (ppm)
lla	5.66(s)	0.85(d) (9H)	10.2		- 10.05(s)
ПР	5.47(s)	1.13(d) (6H)	9.8	7.05(m) (2H) 6.65(m) (3H)	5.15(s)
llc	5.58(s)	1.57(d) (3H)	9.5	7.40(m) (4H) 7.00(m) (6H)	22.00(s)
IId	5.63(s)			7.80(m) (6H) 7.05(m) (9H)	41.30(s)
lle	5.65(s)	0.90(m) (15H) °		() ()	34.29(s)
llf	5.57(s)	0.97(dd) (18H) ^b 1.90(m) (3H)	13.6		67.15(s)
llg	5.65(s)	0.70- 2.20(m) (22H)		7.59(m) (2H) 7.07(m) (3H)	51.99(s)

^a Signale der CH₂- und CH₃-Protonen überlagern sich. ^b J(HH) 6.7 Hz.

Kom- plex	$\frac{\delta(\eta^5 - C_5 H_5)}{(\text{ppm})}$	J(PH) (Hz)	$\delta(\eta^1 - C_5 H_5)$ (ppm)	Temp. (°C)
 Ila	5.28(bs)		6.30(bs)	- 80
IIb	5.28(bs)		6.26(bs)	- 80
IIc	5.14(bs)		6.20(bs)	- 80
IId	5.10(d)	1.8	6.22(bs)	- 79
IIe	5.20(bs)		6.24(bs)	- 85
IIf	5.04(d)	1.6	a	- 80
IIg	5.20(bs)		а	- 81

¹H-NMR-DATEN DER C₅H₅-PROTONEN DER KOMPLEXE IIa-IIg bei ca. - 80°C in Toluol-d₈

^a Signal verschwindet im Untergrund.

TABELLE 2

und 110.82) aufspaltet. Dasjenige bei höherem Feld (δ 100.63), welches wir den C-Atomen des η^5 -C₅H₅-Liganden zuordnen, wird bei -80° C zu einem scharfen Dublett mit einer PC-Kopplungskonstante von 6.6 Hz; das Signal bei niedrigerem Feld verschwindet dagegen bei dieser Temperatur im Untergrund.

Die NMR-Daten (siehe hierzu auch Tab. 1 und 2) lassen insgesamt erkennen, dass bei höherer Temperatur (z.B. für IId oberhalb – 30°C) zwei dynamische Prozesse gleichzeitig ablaufen. Wir nehmen an, dass derjenige mit der grösseren Aktivierungsenergie ein π/σ - (oder η^5/η^1 -)-Austausch der beiden unterschiedlich koordinierten Cyclopentadienylliganden und derjenige mit der kleineren Aktivierungsenergie eine metallotrope Umlagerung (d.h. eine Wanderung der Gruppe $(\eta^5-C_5H_5)PdPR_3$ um den zweiten Fünfring) ist. Diese metallotrope Umlagerung

Fig. 2. Darstellung des Zusammenhangs zwischen Koaleszenztemperatur T (°C, gemessen in Toluol- d_8) für den η^5/η^1 -Austausch der C₅H₅-Liganden in IIa-IIg und dem Kegelwinkel θ des Phosphans.

Komplex	IIa	Пр	IIc	IId	lle	IIf	IIg
\overline{T}	- 67	-61	- 57	- 31	54	- 23	- 30
θ	118	122	136	145	132	160	162

oder 1,2-Verschiebung [13] lässt sich erst bei sehr tiefen Temperaturen einfrieren, so dass hier eine sehr ähnliche Situation wie bei den Komplexen $(\eta^3-RC_3H_4)Pd(\eta^1-C_5H_5)PR_3$ vorliegt [9].

Überraschender als die 1,2-Verschiebung ist der π/σ -Austausch der beiden Cyclopentadienylringe. Ein solcher wurde erstmals bei der Verbindung $(C_5H_5)_3$ -MoNO nachgewiesen [14] und später vor allem bei den Tetracyclopentadienylen des Titans, Zirkons und Hafniums genauer untersucht [13]. Nach unseren Kenntnissen sind bisher nur zwei Komplexe, und zwar der Zusammensetzung $(C_5H_5)_2$ -Mo(NO)(S₂CNR₂) (R = Me, Buⁿ) [15], bekannt, die je einen η^5 - und η^1 -C₅H₅-Liganden enthalten und einem π/σ -Austausch unterliegen. Im Fall der Verbindungen IIa-IIg ist die Geschwindigkeit dieses Prozesses offensichtlich von der Grösse des Phosphanliganden abhängig, was aus den Angaben in Fig. 2 hervorgeht. Hier ist die Koaleszenztemperatur T_K gegen den von Tolman definierten Kegelwinkel θ aufgetragen, der den Raumanspruch des Phosphans angibt [16]. Man sieht, dass zumindest in erster Näherung T_K mit kleiner werdendem Phosphan abnimmt, d.h. dass der π/σ -Austausch beim Gang von IIa (PR₃ = PMe₃) nach IIf (PR₃ = PPr₃¹) und IIg (PR₃ = PCy₂Ph) deutlich verlangsamt wird.

Struktur und Bindungsverhältnisse von (C₅H₅)₂PdPPrⁱ₃ (IIf)

Im kristallinen Zustand ist bei IIf ein Zustand "eingefroren", der in Lösung nur bei sehr tiefen Temperaturen beobachtet werden kann [17]: ein C_5H_5 -Ring ist eindeutig η^1 -gebunden, der andere steht offensichtlich über alle fünf C-Atome mit dem Metall in Wechselwirkung (siehe Fig. 3). Der Schwerpunkt dieses Rings sowie

Fig. 3. Struktur von $(C_5H_5)_2PdPPr_3^{i}$ (IIf). Die Wasserstoffatome sind der besseren Übersichtlichkeit halber nicht eingezeichnet.

die Atome C(12), Pd und P sind koplanar; diese Ebene bildet annähernd eine Spiegelebene für das $(C_5H_5)_2$ Pd-Fragment.

Der η^1 -gebundene C₅H₅-Ring ist planar und zeigt die für ein Diensystem zu erwartende Verteilung der C-C-Bindungslängen. Unter Berücksichtigung der Radiendifferenz zwischen $C(sp^2)$ und $C(sp^3)$ entspricht der Pd-C(12)-Abstand in IIf dem entsprechenden Pd-C-Abstand von 204(2) pm in $(C_5H_5)(PPr_3^i)Pd(\eta^1,\eta^3-C_3H_4)Pd(PPr_3^i)Br$ [18]. Die Pd-P-Bindungslängen sind in beiden Komplexen gleich.

Ungewöhnliche Bindungsparameter finden sich im anderen " η^5 -artig" gebundenen Cyclopentadienylring: neben vier "normalen" Pd–C-Abständen (C(21) bis C(24): 234.6(7) bis 239.0(8) pm) tritt ein deutlich verkürzter Pd–C-Abstand auf (Pd–C(25) 225.9(10) pm); dementsprechend liegt C(25) 12.0(8) pm ausserhalb der durch C(21) bis C(24) definierten Ebene, d.h. der Fünfring kann als entlang der C(21)–C(24)-Verbindungslinie schwach gefaltet beschrieben werden. Innerhalb des C₅H₅-Rings unterscheidet man drei Gruppen von C–C-Abständen: zwei kurze (C(21)–C(22) und C(23)–C(24) je 137 pm), zwei mittellange (C(21)–C(25) 142 pm und C(24)–C(25) 141 pm) und einen sehr langen (C(22)–C(23) 147 pm). Der Mittelpunkt zwischen C(22) und C(23) liegt ungefähr *trans* zum Kohlenstoffatom C(12) des η^1 -C₅H₅ Liganden, das Atom C(25) dagegen annähernd *trans* zum Phosphoratom (siehe Tab. 4).

Die durch IIf repräsentierte Verbindungsklasse weist interessante strukturchemische und bindungstheoretische Aspekte auf - insbesondere im Hinblick auf die beobachtete Bindungsart des quasi η^5 -gebundenen, aber deutlich verzerrten C₅H₅-Liganden. Im Prinzip weist nämlich die bereits erwähnte Existenz der Verbindungen $(\eta^3-RC_3H_4)Pd(\eta^1-C_5H_5)PR_3$ [1,9] darauf hin, dass dem Elektronenbedarf des $(\eta^1-C_5H_5)PdPR_3^+$ -Fragments bereits mit dem Vierelektronen-Donor Allyl⁻ Genüge getan ist. Aber auch für C₅H₅⁻ als Sechselektronen-Donor mit η^5 -Bindungsbeziehung sind in metallorganischen Komplexen immer dann Verzerrungen zu erwarten, wenn die lokale Symmetrie des jeweiligen Metallfragments ML_n und seine Elektronenstruktur zu ungleicher Wechselwirkung zwischen geeigneten ML_n-Valenzorbitalen und den beiden Komponenten bindungsaktiver *e*-Orbitalsätze des C₅H₅-Liganden führt. Für Komplexe des Typs $(\eta^5-C_5H_5)ML_2L'$ ist dies von Mingos et al. diskutiert worden [19].

Systeme des Typs CpML₂ oder CpMLL', zu denen IIf zumindest formal zu rechnen ist, wurden ebenfalls vereinzelt strukturell untersucht (siehe z.B. [18, 20–22]). Der Verzerrung des C₅H₅-Ringes wurde dabei jedoch meist wenig Beachtung geschenkt, wenn man von einer aufschlussreichen Studie Dahls über Struktur und Bindungsverhältnisse in dem Komplex (C₅Me₅)Co(CO)₂ absieht [23]. Dort konnte zum ersten Mal der definitive Nachweis für die elektronisch bedingte Verzerrung eines η^5 -C₅R₅-Liganden geführt werden. Der experimentelle Nachweis statistisch signifikanter Deformationen für π -gebundene C₅H₅-Gruppen ist sonst generell wegen der kaum eingeschränkten Rotation um die M-C₅H₅-Achse und der Beweglichkeit (libration motion) des Fünfrings recht schwierig zu führen.

Die Röntgenstrukturanalyse des eingefrorenen Grundzustandes von IIf zeigt jedoch eindeutige Abweichungen von fünfzähliger Symmetrie sowohl innerhalb des π -gebundenen C₅H₅-Rings als auch bei dessen C-Pd-Abständen. Eine Beschreibung der Bindung des Fünfrings an das Metall über eine $(\eta^3$ -C₅H₅)Pd-Teilstruktur scheint aus den Strukturdaten ebenfalls nicht einfach ableitbar zu sein. Die aufgefundenen deutlichen Abstandsdifferenzen hängen sicherlich auch damit zusammen,

TABELLE 3

ATOMPARAMETER VON $(C_5H_5)_2$ PdPPr₃ (IIf). Der anisotrope Temperaturfaktor ist definiert: $T = \exp[-1/4(h^2a^{*2}B_{11} + k^2b^{*2}B_{22} + l^2c^{*2}B_{33} + 2hka^*b^*B_{12} + 2hla^*c^*B_{13} + 2klb^*c^*B_{23})]; B_{ij}$ in 10⁴ pm²

Atom	x/a	y/b	z/c	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
Pd	0.23569(3)	0.22488(3)	0.25826(5)	2.05(2)	1.47(2)	2.44(2)	0.09(2)	1.34(2)	- 0.09(2)
Р	0.3503(1)	0.1970(1)	0.3194(2)	1.8(1)	1.6(1)	1.5(1)	0.1(1)	1.0(1)	0.0(1)
C(1)	0.3480(4)	0.3075(5)	0.1508(7)	4.1(4)	3.0(4)	2.7(4)	-0.2(3)	2.0(3)	0.4(3)
C(2)	0.3859(4)	0.2969(4)	0.2860(6)	2.6(3)	2.5(3)	1.7(3)	-0.3(3)	1.2(3)	-0.2(2)
C(3)	0.4682(4)	0.3044(5)	0.3539(7)	2.6(4)	4.3(4)	3.2(4)	-0.5(3)	1.9(3)	0.2(3)
C(4)	0.4397(4)	0.0711(6)	0.3022(8)	3.3(4)	4.4(4)	5.5(5)	0.9(3)	3.1(4)	-0.8(4)
C(5)	0.3629(4)	0.0920(4)	0.2614(6)	2.2(3)	2.1(3)	2.7(3)	0.3(3)	1.6(3)	-0.2(3)
C(6)	0.3102(5)	0.0845(5)	0.1255(7)	5.9(5)	2.5(4)	2.5(4)	-0.2(3)	2.7(4)	-0.3(3)
C(7)	0.4132(4)	0.2686(6)	0.5451(6)	3.2(4)	4.6(4)	1.9(3)	-0.6(3)	1.5(3)	-0.6(3)
C(8)	0.4161(4)	0.1849(5)	0.4834(6)	2.0(3)	3.2(3)	1.4(3)	0.0(3)	0.8(3)	0.2(3)
C(9)	0.4007(4)	0.1003(5)	0.5265(6)	3.8(4)	3.9(4)	1.9(3)	1.2(3)	1.8(3)	1.1(3)
cún	0.1373(4)	0.0725(5)	0.1358(7)	2.4(4)	1.6(3)	3.6(4)	-0.2(3)	0.9(3)	-0.3(3)
C(12)	0.2062(4)	0.0870(4)	0.2523(7)	2.6(4)	1.0(3)	3.4(4)	0.4(2)	1.7(3)	0.6(3)
C(13)	0.1851(5)	0.0783(5)	0.3340(7)	4.1(5)	2.2(3)	3.0(4)	0.0(3)	1.9(4)	0.9(3)
C(14)	0.1136(5)	0.0633(5)	0.2732(8)	3.7(4)	2.5(4)	4.9(5)	-0.4(3)	3.0(4)	-0.1(3)
CIIS	0.0827(4)	0.0575(5)	0.1491(8)	2.8(4)	2.2(3)	4.1(4)	-0.3(3)	1.3(4)	-0.5(3)
C(21)	0.1852(4)	0.3301(5)	0.3176(7)	3.9(4)	1.6(3)	4.0(4)	0.8(3)	3.1(4)	0.0(3)
C(22)	0.2313(4)	0.3770(4)	0.3021(6)	3.1(4)	1.3(3)	2.9(4)	0.6(3)	1.7(3)	-0.4(3)
C(23)	0.2003(4)	0.3722(4)	0.1747(7)	4.2(4)	1.4(3)	3 7(4)	1.2(3)	2.8(4)	0.7(3)
C(24)	0.1368(4)	0.3223(5)	0.1181(7)	2.9(4)	1.9(3)	3.1(4)	0.4(3)	1.1(3)	0.0(3)
C(25)	0.1301(4)	0.2892(5)	0.2064(8)	2.0(3)	1.6(3)	5.3(4)	0.0(3)	2.1(3)	-0.1(3)

Wasserstoffatome ($B_{iso} = 7.0$)

Atom	x/a	.y/b	z/c	Atom	x/a	y/b	z/c	
H(11)	0.3038	0.2967	0.1072	H(73)	0.4464	0.2653	0.6291	
H(12)	0.3710	0.2694	0.1278	H(81)	0.4663	0.1793	0.5166	
H(13)	0.3536	0.3691	0.1360	H(91)	0.3577	0.0838	0.4998	
H(21)	0.3740	0.3460	0.3191	H(92)	0.4275	0.1014	0.6100	
H(31)	0.4844	0.3578	0.3633	H(93)	0.4184	0.0483	0.5058	
H(32)	0.4856	0.2711	0.3160	H(111)	0.1002	0.0693	0.0492	
H(33)	0.4932	0.2800	0.4340	H(121)	0.2476	0.0479	0.2746	
H(41)	0.4629	0.0712	0.3803	H(131)	0.2179	0.0832	0.4188	
H(42)	0.4600	0.1133	0.2772	H(141)	0.0858	0.0549	0.3075	
H(43)	0.4446	0.0112	0.2765	H(151)	0.0300	0.0438	0.0811	
H(51)	0.3502	0.0468	0.2985	H(211)	0.1925	0.3242	0.3927	
H(61)	0.2747	0.1027	0.1046	H(221)	0.2779	0.4071	0.3689	
H(62)	0.3032	0.0223	0.1004	H(231)	0.2214	0.3984	0.1350	
H(63)	0.3280	0.1166	0.0883	H(241)	0.1045	0.3105	0.0363	
H(71)	0.3668	0.2714	0.5232	H(251)	0.0947	0.2448	0.1941	
H(72)	0.4227	0.3222	0.5179					

AUSGEWÄHLTE AB	USGEWAHLTE ABSTANDE (pm) UND WINKEL (Grad) IN (C ₅ H ₅) ₂ PdPPr ₃ ' (IIf)				
Pd-C(12)	213.0(7)	C(12)-C(13)	147(1)		
Pd-C(21)	234.9(9)	C(13)-C(14)	133(2)		
Pd-C(22)	234.6(7)	C(14)-C(15)	143(1)		
Pd-C(23)	237.3(7)	C(15)-C(11)	137(2)		
Pd-C(24)	239.0(8)	C(11)-C(12)	145(1)		
Pd-C(25)	225.9(10)	C(21)-C(22)	137(1)		
Pd-P	224.1(3)	C(22)-C(23)	147(1)		
P-C(2)	186.7(8)	C(23)-C(24)	137(1)		
P-C(5)	184.8(7)	C(24)-C(25)	141(1)		
P-C(8)	184.7(7)	C(25)-C(21)	142(1)		
C(12)-Pd-P	96.1(2)	Pd-C(12)-C(11)	106.9(6)		
$C(12)-Pd-M^{a}$	149.1(3)	Pd-C(12)-C(13)	106.9(6)		
C(12)-Pd-C(25)	98.1(3)	Pd-P-C(2)	109.6(3)		
P-Pd-C(25)	165.6(2)	Pd-P-C(5)	115.7(3)		
P-Pd-M ^a	108.3(2)	Pd-P-C(8)	113.2(3)		

" M ist der Mittelpunkt zwischen C(22) und C(23).

dass die beiden Liganden L und L' des MLL'-Fragments $(\eta^1-C_5H_5)PdPPr_3^i$ elektronisch recht unterschiedlich sind. Dies ist etwa auch bei (C_5H_5) -(CO)Ni-Cr(CO)₃(C₅H₅) der Fall [21], wo das zum Chromatom trans-ständige Kohlenstoffatom um 7 pm kürzer an das Nickelatom gebunden ist als die übrigen vier Kohlenstoffatome.

Im folgenden soll, gestützt auf MO-Berechnungen vom Extended-Hückel-Typ [24], der Bindungsmodus des π -gebundenen C₅H₅-Liganden der Komplexe (C₅H₅)₂PdPR₃ untersucht werden, um die bei IIf beobachteten Struktureigenarten zu verstehen. Dabei dient III als vereinfachtes Modell für die Berechnungen; Geometrie und Parameter sind im Anhang spezifiziert. (Der Ersatz des (η^1 -C₅H₅)-Liganden durch die CH₃-Gruppe in den Rechnungen hat keine für unsere Aussagen relevanten Konsequenzen, erleichtert aber die Analyse).

(田)

Da unser Ziel die Beschreibung der elektronischen Situation des " η^5 "-gebundenen Fünfrings sein soll, ist es sinnvoll, die Elektronenstruktur von II bzw. des Modellsystems III im Rahmen einer Fragment-Analyse [25], d.h. im Rahmen der Wechselwirkung der wohlbekannten Valenzorbitale eines C₅H₅-Liganden und eines gewinkelten $Pd(CH_3)(PH_3)^+ - d^8$ -Fragments zu analysieren. Dabei liegt den Berechnungen ein C_5H_5 -Ring mit lokaler D_{5b} -Symmetrie und identischen C-Pd-Abständen zugrunde. Diese Idealisierung erlaubt es, statt extensiver Geometrieopti-

TABELLE 4

mierung der Gesamtstruktur die Variation der reduzierten Überlappungspopulationen zwischen den Atomen heranzuziehen, um die Richtung der vom Molekül bei Geometrierelaxation bevorzugten strukturellen Abweichung vom idealisierten Fall und damit Bindungslängenunterschiede aufzufinden.

Entsprechend den allgemeinen Erwartungen bei derartigen Rotationsbarrieren [26] zeigen die MO-Rechnungen zunächst, dass in Übereinstimmung mit den spektroskopischen Befunden die Rotation des $(\eta^5-C_5H_5)$ -Liganden um die C_5H_5 -Pd-Achse nur ausserordentlich geringer Aktivierungsenergie bedarf. Die ausgezeichneten rotameren Einstellungen IIIa, IIIb und IIIc besitzen praktisch gleiche Energie innerhalb von Bruchteilen einer Kilokalorie.

Das Rotamer IIIa, auf das sich alle folgenden Aussagen beziehen, ist minimal begünstigt und entspricht der auch im Kristall aufgefundenen Konformation von IIf.

In IV und V sind die für IIIa berechneten reduzierten Überlappungspopulationen zwischen den Kohlenstoffatomen des C_5H_5 -Liganden und Pd sowie innerhalb des Fünfrings wiedergegeben.

Es zeigt sich ein den experimentellen Befunden an IIf vollständig entsprechendes Bild. C(25) (die Nummern der Fig. 3 sind beibehalten) weist die stärkste Bindung zum Metallzentrum auf, schwächere Bindungsbeziehungen liegen zu C(21) bis C(24) vor, die für IIIa, anders als in der nicht echt C_s -symmetrischen, realen Molekülgeometrie von IIf, paarweise gleich sind (C(22)/C(21), C(24)/C(23)). Innerhalb des Cyclopentadienylliganden findet sich für das Modell deutliche Bindungsalternanz: zwei jeweils kurze Bindungen zwischen C(21) und C(22) bzw. C(23) und C(24), zwei mittlere Bindungslängen zwischen C(25) und C(21) bzw. C(24) sowie in *cis*-Stellung zur Pd-P-Bindung die längste Bindung C(22)-C(23).

Die Rechnung vermag also die Abweichungen von einer idealen η^5 -Bindungssituation des C₅H₅-Liganden qualitativ richtig wiederzugeben. Die elektronischen Gründe für die theoretisch zu erwartenden und gefundenen Verhältnisse sind einfach zu verstehen.

Figur 4 zeigt für Konformation IIIa der Modellverbindung (C₅H₅)Pd-

 $(CH_3)(PH_3)$ ein Wechselwirkungsdiagramm zwischen dem $C_5H_5^{-1}$ -Liganden und dem d^8 -Pd $(CH_3)(PH_3)^+$ -Fragment. Die Valenzorbitale des Cyclopentadienylsystems sind links wiedergegeben $(1\pi, 2\pi_s, 2\pi_a, 3\pi_s, 3\pi_a)$, diejenigen der gewinkelten Metalleinheit auf der rechten Seite.

Die Valenzorbitale eines gewinkelten $(C_{2v}) d^8$ -ML₂-Fragments (isolobal zu einem $C_{2v} d^6$ -ML₄-Fragment oder zu CH₂²⁺ [27]) sind in der Literatur ausführlich beschrieben [27,28] und finden sich, modifiziert durch die Ungleichheit beider Liganden, für Pd(CH₃)(PH₃)⁺ wieder. Oberhalb eines Satzes von vier nahezu entarteten, praktisch vollständig am Metall zentrierten, besetzten 4d-Orbitalen $(x^2 - y^2, z^2, yz, xy)$ [29] liegt das mit b_2 bezeichnete, niedrigste Akzeptor-MO der MLL'-Einheit (xz, destabilisiert durch σ -Antibindung zu den beiden Liganden). Bei wesentlich höherer Energie finden sich zwei weitere Orbitale, a_1 (ein Hybrid aus s, z und x am Pd) sowie b_1 mit praktisch reinem y-Beitrag. Das letztgenannte MO entspricht dem LUMO eines typischen quadratisch-planaren d^8 -ML₄-Systems; a_1 und b_2 sind die delokalisierten (kanonischen) Äquivalente zweier lokalisierte dsp^2 -Hybride, wie sie bei Entfernung von zwei *cis*-ständigen Liganden an einem quadra-

Fig. 4. Wechselwirkungsdiagramm für IIIa; vier hochliegende σ -Orbitale des C₅H₅-Anions sind der Übersichtlichkeit halber weggelassen. Symmetriesymbole wie bei C_{2v}-ML₂.

tisch planaren d^8 -ML₄-Komplex freigesetzt werden [27]. Für die elektronisch ungleichen Liganden CH₃⁻ und PH₃ (η^1 -C₅H₅ und PPr¹₃ in IIf) ergibt sich für b_2 und insbesondere für a_1 eine Rechts-Links-Asymmetrie, die in den Konturdiagrammen [30] der Wellenfunktionen in Fig. 5 zu erkennen ist.

Die Hauptausdehnung von a_1 und damit die Richtung maximaler Überlappungsfähigkeit folgt nicht der Winkelhalbierenden des Winkels C-Pd-P (z-Achse in III), sondern weicht in Richtung des Alkylliganden ab (gestrichelte Linie in Fig. 5). Ursache hierfür ist die nach VI stattfindende Einmischung von x-Charakter in a_1 , die die antibindende Wechselwirkung zwischen s-Beitrag am Metall und dem besseren σ -Donor CH₃⁻ reduziert und die für ein C_{2v} -ML₂-Fragment aus Symmetriegründen nicht möglich ist. Auch das LUMO des Pd(CH₃)(PH₃)⁺-Fragments, b_2 , weist geringe Asymmetrie auf, bedingt durch Einmischen von $x^2 - y^2$ in der reduzierten Symmetrie.

Die dominierende Wechselwirkung zwischen dem C_5H_5 -Liganden und dem Metallfragment resultiert für die bei IIIa gegebene Konformation aus der Überlappung zwischen dem LUMO des Pd(CH₃)(PH₃)⁺-Teils, b_2 , und der $2\pi_s$ -Komponente des HOMO vom Cyclopentadienylanion. Das niedrigste unbesetzte MO des Komplexes ist die antibindende Linearkombination dieser beiden Grenzorbitale und liegt bei relativ niedriger Energie. $2\pi_a$ tritt kaum mit b_1 in Wechselwirkung (grosse Energiedifferenz), a_1 überlappt hauptsächlich mit 1π des C₅H₅-Anions, tut dies aber aufgrund seiner "gekippten" räumlichen Ausdehnung auch mit $2\pi_s$. In beiden Wechselwirkungen von a_1 mit diesen C_5H_5 -Orbitalen dominiert die Uberlappung zwischen C(25) und dem Pd-Fragment. Höchstes besetztes Orbital des Komplexes ist das vom gefüllten yz-Orbital am Metall destabilisierte MO $2\pi_a$, das insgesamt kaum Elektronendichte an das Metallfragment verliert [31]. Die Konsequenz der nahezu unverminderten Besetzung von $2\pi_a$ und des Elektronentransfers aus $2\pi_s$ und 1π nach b_2 und a_1 ist entsprechend den wohlbekannten nodalen Eigenschaften von $2\pi_a$ und $2\pi_s$ (zum Aussehen dieser Orbitale siehe Fig. 4) exakt die oben beschriebene Bindungslängen-Alternanz im $C_{s}H_{s}$ -Ring. Die Asymmetrie von a_{1} und der grosse Koeffizient am C(25) in $2\pi_s$ bedingen die verstärkte Bindung von C(25) an das Metall und letztlich die Abweichung von C(25) aus der Ebene der restlichen vier C-Atome hin zum Palladium. Dies entspricht auch insofern der Erwartung, als damit das C-Atom in trans-Stellung zum schwächeren σ -Donor PR₃ (mit zusätzlichen geringen Akzeptoreigenschaften) fester (kürzer) gebunden ist [32] als die zum guten σ -Donor CH₃⁻ (η^{1} -C₅H₅ in IIf) *trans*-ständigen Kohlenstoffatome.

Formal fungiert somit ein $Pd(\eta^1-C_5H_5)PR_3^+$ -Metallfragment in den Komplexen II als Vierelektronen-Akzeptor gegenüber dem zusätzlichen C_5H_5 -Liganden [33], was die Existenz von entsprechenden Systemen mit η^3 -Allyl-Gruppen statt des Cyclo-

Fig. 5. Konturdiagramme der Akzeptororbitale a_1 und b_2 des Pd(CH₃)(PH₃)⁺-Fragments.

pentadienylrings bereits nahelegt [1,9]. Derartige Allylkomplexe müssen dann - wie experimentell gefunden - die in VII dargestellte Konformation aufweisen, da nur dann b_2 des Pd(R)PR₃⁺-Fragments mit dem antisymmetrischen HOMO des Allylanions wechselwirken kann. Für die Allylkomplexe fehlt in Fig. 4 das hochliegende, von $2\pi_a$ abstammende HOMO. Der Energieabstand zwischen den jetzt als höchste besetzte Orbitale vorliegenden Molekülorbitalen und dem LUMO ist erheblich grösser. Hieraus erklärt sich zwanglos die blassgelbe bis fehlende Farbe der (η^3 -RC₃H₄)Pd(η^1 -C₅H₅)PR₃-Komplexe, die im Kontrast zur grünen Farbe der (C₅H₅)₂PdPR₃-Verbindungen steht.

Die Struktur von IIf kann vereinfacht als "quadratisch-planarer" Komplex von Pd^{II} (16 Valenzelektronen) beschrieben werden: zwei *cis*-Positionen am Metall sind dabei von der C(22)-C(23)-Bindung und von C(25) besetzt. Obwohl der π -C₅H₅-

Ligand in IIf (IIIa) somit nicht als echter Sechselektronen-Donor auftritt, bedingt die dominante Wechselwirkung $b_2/2\pi_s$, d.h. die Bindung von Pd an C(25) und an die gegenüberliegenden Atome C(22) und C(23), dass das Metallzentrum quasi unter der "Ringmitte" zu liegen kommt.

Zu betonen ist, dass das im Kristall für IIf aufgefundene spezifische Muster der Bindungslängenalternanz in den C-C- und Pd-C-Bindungen durch die vorliegende Konformation bedingt ist und für Konformere wie IIIb und IIIc anders zu erwarten wäre. Für Konformation IIIc etwa würde das LUMO b_2 des Pd(CH₃)(PH₃)⁺-Fragments mit $2\pi_a$ statt $2\pi_s$ in Wechselwirkung treten. Dadurch verlöre $2\pi_a$ Elektronendichte an das Metall, $2\pi_s$ bliebe besetzt und eine Verzerrung des Fünfrings wie in VIII angedeutet, mit kürzeren Pd-C-Bindungen der zur η^1 -Alkylgruppe *cis*-ständigen C-Atome und mit langem Pd-C-Abstand zum eingezeichneten Kohlenstoffatom, wäre die Folge.

Die Rotation des C_5H_5 -Rings geht also einher mit entsprechenden, voraussagbaren Relaxationsbewegungen, die direkt durch die rotamere Einstellung des MLL'-Fragments (des b_2 -MOs) bedingt sind.

Die hier ausgeführten Argumente sind entsprechend auf andere zu $Pd(CH_3)PH_3^+$ isolobale Fragmente (d^8-ML_2 , $d^6-ML_4(C_{2v})$, (μ -X) $Pd_2L_2^+$) [27,34] übertragbar. Voraussetzung dafür ist, dass der potentielle Sechselektronen-Donor $C_5H_5^-$ oder eine elektronisch äquivalente Gruppe [35] an derartige Vierelektronen-Akzeptoren gebunden ist.

Reaktionen der Komplexe $(\eta^5 - C_5 H_5) Pd(\eta^1 - C_5 H_5) PR_3$

Mit der Isolierung der Titelverbindungen schien eine reelle Chance gegeben, das im Gegensatz zum Nickelocen Ni $(C_5H_5)_2$ noch nicht bekannte "Palladocen" Pd $(C_5H_5)_2$ [10] darzustellen. Dieses Vorhaben misslang jedoch. Weder beim Erhitzen von IIa–IIg (z.T. im Vakuum) noch bei der Umsetzung mit Schwefel trat eine Spaltung der Pd–PR₃-Bindung unter gleichzeitiger Bildung von Pd $(C_5H_5)_2$ ein. Die Thermolyse führt vielmehr zu den Zweikernkomplexen $(C_5H_5)_2Pd_2(PR_3)_2$, wobei als zweites Produkt vermutlich ein Kohlenwasserstoff $C_{10}H_{10}$ entsteht. Die Verbindungen $(\eta^5-C_5H_5)Pd(\eta^1-C_5H_5)PR_3$ verhalten sich damit ähnlich wie die Allylcyclopentadienyl-Komplexe $C_5H_5Pd(2-RC_3H_4)PR'_3$, die zum Teil bei Raumtemperatur, zum Teil aber auch erst bei 90°C zu $(C_5H_5)(2-RC_3H_4)Pd_2(PR'_3)_2$ reagieren [1].

Die Umsetzungen von IIf mit Haloformen CHX₃ ergeben praktisch quantitativ die Verbindungen C₅H₅Pd(PPr₃)X (X = Cl, Br, I) [37]. Die Reaktionsdauer hängt dabei stark von der Art des Halogens ab, so dass für X = I ein vollständiger Umsatz bereits nach 1 Stunde, für X = Br bzw. Cl jedoch erst nach 2 bzw. 4 Tagen erreicht ist. Hier zeigt sich eine Ähnlichkeit im Verhalten zwischen den Komplexen II und den entsprechenden, aus Ni(C_5H_5)₂ und PR₃ entstehenden, kurzlebigen Zwischenverbindungen (η^5 - C_5H_5)Ni(η^1 - C_5H_5)PR₃, die mit CHX₃ ebenfalls unter Spaltung der Ni-(η^1 - C_5H_5)-Bindung zu C_5H_5 Ni(PR₃)X reagieren [6,8].

Auch in Gegenwart von Carbonsäuren wird die Bindung $Pd-(\eta^{1}-C_{5}H_{5})$, z.B. in IId und IIf, rasch gespalten. Mit $CF_{3}CO_{2}H$ bilden sich in Pentan bei $-78^{\circ}C$ sofort und quantitativ die Komplexe $C_{5}H_{5}Pd(PR_{3})OCOCF_{3}$ (IIId, IIIf), die auf anderem Wege bisher noch nicht dargestellt wurden. Es sind dunkelgrüne, kristalline Feststoffe, die kurzzeitig an Luft handhabbar und in den meisten organischen Solvenzien gut löslich sind. Die ¹H- und ³¹P-NMR-Daten werden im Experimenteller Teil angegeben.

Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Stickstoff und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Ausgangsverbindungen $[Cl(PR_3)Pd]_2(\mu$ -OCOCH₃)₂ (Ia-Ig) wurden nach Literaturangaben dargestellt [38].

Darstellung der Komplexe $(\eta^5 - C_5 H_5)Pd(\eta^1 - C_5 H_5)PR_3$ (IIa-IIg)

Eine Lösung von 1.0 mMol Ia-Ig in 10 ml Toluol wird mit 1.2. g (4.4 mMol) TlC_5H_5 versetzt und 1-4 Std. (in Abhängigkeit von der Art des Phosphans) bei Raumtemperatur gerührt. Zu der intensiv grünen Lösung gibt man entsprechend der Löslichkeit der gebildeten Komplexe 10-30 ml Hexan, filtriert und lässt mehrere Tage bei -78°C stehen. Die gebildeten dunkelgrünen Kristalle werden abfiltriert, mehrmals mit kaltem Pentan gewaschen und im Hochvakuum getrocknet. Ausbeute ca. 70-95%.

IIa: Schmp. 83°C (Zers.). (Gef.: C, 49.58; H, 6.05; Pd, 34.91. C₁₃H₁₉PPd ber.: C, 49.94; H, 6.13; Pd, 34.03%).

IIb: Schmp. 62°C (Zers.). (Gef.: C, 57.13; H, 5.72; Pd, 28.09. C₁₈H₂₁PPd ber.: C, 57.69; H, 5.65; Pd, 28.39%).

IIc: Schmp. 71°C (Zers.). (Gef.: C, 63.89; H, 5.50; Pd, 24.47. C₂₃H₂₃PPd ber.: C, 63,24; H, 5.31; Pd, 24.36%).

IId: Schmp. 81°C (Zers.). (Gef.: C, 66.49; H, 5.02; Pd, 21.49. C₂₈H₂₅PPd ber.: C, 67.41; H, 5.05; Pd, 21.33%).

IIe: Schmp. 53°C (Zers.). (Gef.: C, 53.27; H, 7.06; Pd, 30.58. C₁₆H₂₅PPd ber.: C, 54.17; H, 7.10, Pd, 29.99%).

IIf: Schmp. 98°C (Zers.). (Gef.: C, 58.11; H, 7.81; Pd, 26.79. $C_{19}H_{31}PPd$ ber.: C, 57.51; H, 7.87; Pd, 26.81%).

IIg: Schmp. 99°C. (Gef.: C, 65.66; H, 6.96; Pd, 21.58. C₂₈H₃₇PPd ber.: C, 65.82; H, 7.30; Pd, 20.82%).

Reaktion von $(\eta^5 - C_5H_5)Pd(\eta^1 - C_5H_5)PR_1$ (IIa-IIg) zu $(\mu - C_5H_5)_2Pd_2(PR_3)_2$

Eine Lösung von 2.0 mMol IIa-IIg in 5-10 ml Toluol wird mit 20 ml Hexan versetzt und 5-7 Tage bei Raumtemperatur stehen gelassen. Es bilden sich rubinrote Kristalle, die ¹H-NMR-spektroskopisch (nach Vergleich mit authentischen Proben [3]) charakterisiert wurden. Ausbeute 75-85%. Die Bildung der Zweikernkomplexe kann durch Erwärmen beschleunigt werden; die Ausbeute sinkt dadurch jedoch teilweise recht erheblich ab.

Reaktion von $(\eta^5 - C_5 H_5) Pd(\eta^1 - C_5 H_5) PPr_3^i$ (IIf) mit Haloformen

Eine Lösung von 40 mg (0.10 mMol) IIf in 0.5 ml C₆D₆ wird mit einer äquimolaren Menge CHX₃ (X = Cl, Br, I) versetzt und der Verlauf der Reaktion ¹H-NMR-spektroskopisch verfolgt. Ein vollständiger Umsatz ist für X = I nach 1 h, für X = Br nach 2 Tagen und für X = Cl nach 4 Tagen erreicht. Das Lösungsmittel wird im Vakuum abgezogen und der Rückstand getrocknet. Die Produkte von der Zusammensetzung (η^{5} -C₅H₅)Pd(PPr₃ⁱ)X (X = Cl, Br, I) werden ¹H-NMR-spektroskopisch durch Vergleich mit den Spektren authentischer Proben [37] charakterisiert.

Darstellung der Komplexe $(\eta^{5}-C_{5}H_{5})Pd(PR_{3})OCOCF_{3}$ (IIId, IIIf)

Eine Suspension von 0.8 mMol IId bzw. IIf in 5 ml Pentan wird auf -78° C gekühlt und unter starkem Rühren tropfenweise mit einer Lösung von 91 mg (0.8 mMol) CF₃CO₂H in 3 ml Pentan versetzt. Nach 2 h Rühren und langsamem Erwärmen auf Raumtemperatur wird die überstehende Lösung abdekantiert, der Rückstand im Hochvakuum getrocknet und das Rohprodukt aus Toluol/Hexan umkristallisiert. Man erhält dunkelgrüne Kristalle. Ausbeute 75% (für IIId) bzw. 85% (für IIIf).

IIId: Schmp. 107°C (Zers.). (Gef.: C, 55.21; H, 4.01. $C_{25}H_{20}F_3O_2PPd$ ber.: C, 54.91; H, 3.69%). ¹H-NMR (C_6D_6 ; TMS int.): δ 5.43(d), J(PH) 2.0 Hz (C_5H_5). ³¹P-NMR (C_6D_6 ; 85% H_3PO_4 ext.): 32.84(s).

IIIf: Schmp. 77°C (Zers.). (Gef.: C, 43.79; H, 6.13; Pd, 24.59. $C_{16}H_{26}F_3O_2PPd$ ber.: C, 43.21; H, 5.89; Pd, 23.92%). ¹H-NMR (C_6D_6 ; TMS int.): δ 5.53(d), J(PH) 2.0 Hz (C_5H_5). ³¹P-NMR (C_6D_6 ; 85% H₃PO₄ ext.): δ 68.05(s).

Massenspektren (Varian MAT CH 7; 70eV)

IIa (60°C): $m/e(I_r)$ 312 (100; M^+), 247 (70; $M^+ - C_5H_5$), 236 (48; Pd(C_5H_5)₂⁺), 182 (52; PdPMe₃⁺).

IIb (82°C): $m/e(I_r)$ 374 (15; M^+), 309 (24; $M^+ - C_5H_5$), 244 (100; PdPMe₂Ph⁺), 236 (13; Pd(C₅H₅)₂⁺), 171 (22; PdC₅H₅⁺).

IId (120°C): $m/e(I_r)$ 498 (9; M^+), 433 (50; $M^+ - C_5H_5$), 368 (100; PdPPh₃⁺). IIe (25°C): $m/e(I_r)$ 354 (24; M^+), 289 (25; $M^+ - C_5H_5$), 236 (6; Pd(C_5H_5)₂⁺), 224 (100; PdPEt₃⁺).

IIf (65°C): $m/e(I_r)$ 396 (13; M^+), 331 (34; $M^+ - C_5H_5$), 266 (100; PdPPr₃⁺⁺). IIg (125°C): $m/e(I_r)$ 510 (69; M^+), 445 (25; $M^+ - C_5H_5$), 380 (100, PdPCy₂Ph⁺).

534

IIIf (40°C): $m/e(I_r)$ 444 (37; M^+), 379 (7; $M^+ - C_5H_5$), 331 (8; $M^+ - CF_3CO_2$), 266 (100, PdPPr₃ⁱ⁺), 219 (62; CF₃CO₂Pd⁺).

Röntgenstruktur-Analyse von IIf

Die Zellkonstanten von IIf wurden durch Präzessions-Aufnahmen bestimmt: Monoklin, a 2266.1(13), b 1478.1(7), c 1386.7(7) pm, β 126.32(3)°, V 3742 × 10⁶ pm³; Raumgruppe C2/c (Z = 8), d(ber.) 1.41 g cm⁻³ (-20°C). Messung der Reflex-Intensitäten im Bereich 2° $\leq 2\theta \leq 48^{\circ}$ (2835 unabhängige Reflexe) erfolgte bei - 20°C auf einem automatischen Vierkreisdiffraktometer Syntex P2₁ mit Hilfe von Mo- K_{α} -Strahlung (λ 71.069 pm, Graphit-Monochromator) nach der ω -scan-Methode. Nach Lorentz- und Polarisations-Korrektur erfolgte die Lösung der Struktur nach der Patterson-Methode. Die Atomparameter wurden nach der Methode der kleinsten Quadrate mit der vollständigen Matrix, mit anisotropen Temperatur-Parametern für alle Nicht-Wasserstoffatome verfeinert (Atomformfaktoren für ungeladene Atome 1t. International Tables). Die Lagen der Wasserstoffatome wurden teilweise aus Differenz-Fourier-Synthesen erhalten, teilweise nach idealer Geometrie berechnet und nicht verfeinert. Für 2288 Reflexe ($F_0 \geq 3.92 \sigma(F_0)$) konvergierten R gegen 0.048 und R_w gegen 0.045. Tabelle 3 enthält die abschliessenden Atom-Parameter, Tabelle 4 eine Auswahl wichtiger intramolekularer Abstände und Winkel.

Anhang

Für die Extended-Hückel-MO-Rechnungen wurden für C und H die üblichen Standardparameter verwendet [24]. Zur Berechnung der H_{ij} -Matrixelemente diente eine für Übergangsmetallsysteme modifizierte Wolfsberg-Helmholz-Beziehung [36]. Die Atomparameter für Pd und P sind nachstehend aufgeführt.

	Orbital	H_{ij} (eV)	Exponenten ^a		
			<u>۲</u>	\$2	
Pd	55	- 7.68	2.19		
	5 <i>p</i>	- 4.05	2.152		
	4 <i>d</i>	- 12.51	5.983(0.5264)	2.613(0.6373)	
Р	35	- 18.60	1.75		
	3 <i>p</i>	- 14.00	1.3		

^a Koeffizienten der double zeta 4*d*-Funktionen in Klammern. Werte für Pd aus: H. Basch und H.B. Gray, Theoret. Chim. Acta, 4 (1966) 367.

Modellgeometrie für IIIa, idealisiert übernommen aus den Strukturdaten von IIf: C₅H₅-Ring: lokale D_{5k}-Symmetrie, C-C 1.4 Å (Mittelwert der C-C-Abstände in IIf: 1.409 Å), C-H 1.08 Å. Alle C-Pd Abstände 2.36 Å. Pd-C_{CH}, 2.13 Å, Pd-P 2.24 Å, C-H_{CH}, 1.09 Å, CH₃-Gruppe als Tetraederfragment. P-H 1.42 Å, PH₃ als Tetraederfragment. Winkel C_{CH3}-Pd-P 94°. Orientierung der CH₃- und PH₃-Gruppen: siehe III.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die grosszügige Unterstützung mit Personal- und Sachmitteln sowie den Firmen BASF und DEGUSSA für wertvolle Chemikalienspenden. Frau Dr. G. Lange und Frau U. Neumann sind wir für die Massenspektren, Herrn Dr. W. Buchner und Herrn C.P. Kneis für NMR-Messungen, Frl. R. Schedl und Frau M. Rothenburger für die Durchführung von Elementaranalysen und Herrn J. Riede für Diffraktometermessungen zu besonderem Dank verbunden.

Literatur

- 1 H. Werner, A. Kühn und Ch. Burschka, Chem. Ber., 113 (1980) 2291.
- 2 H. Werner und H.-J. Kraus, J. Chem. Soc. Chem. Commun., (1979) 814.
- 3 H. Werner, H.-J. Kraus, U. Schubert und K. Ackermann, Chem. Ber., 115 (1982) 2905.
- 4 H. Werner, Adv. Organometal. Chem., 19 (1981) 155.
- 5 V. Harder, Dissertation Univ. Zürich, 1972.
- 6 Yu.A. Ustynyuk, T.I. Voevodskaya, N.A. Zharikova und N.A. Ustynyuk, Dokl. Akad. Nauk USSR, 181 (1968) 372.
- 7 H. Werner, V. Harder und E. Deckelmann, Helv. Chim. Acta, 52 (1969) 1081.
- 8 V. Harder und H. Werner, Helv. Chim. Acta, 56 (1973) 1620.
- 9 H. Werner und A. Kühn, Angew. Chem., 91 (1979) 447; Angew. Chem. Int. Ed. Engl., 18 (1979)416.
- 10 P.M. Maitlis, The Organic Chemistry of Palladium, Verlag Academic Press, New York, 1971, Vol. I, S. 254.
- 11 N.M. Sergeyev, Progr. Nucl. Magn. Reson. Spectrosc., 9 (1973) 71.
- 12 H. Werner und H.-J. Kraus, Angew. Chem., 91 (1979) 1013; Angew. Chem. Int. Ed. Engl., 18 (1979) 948.
- 13 F.A. Cotton und L.M. Jackman, Dynamic Nuclear Magnetic Resonance Spectroscopy, Verlag Academic Press, New York, 1975, Kap. 10.
- 14 F.A. Cotton und P. Legzdins, J. Am. Chem. Soc., 90 (1968) 6232.
- 15 M.M. Hunt, W.G. Kita, B.E. Mann und J.A. McCleverty, J. Chem. Soc. Dalton Trans., (1978) 467.
- 16 C.A. Tolman, Chem. Rev., 77 (1977) 313.
- 17 Die "Rotation" des $(\eta^5-C_5H_5)$ -Ringes als dritter dynamischer Prozess dieser Verbindungen kann in Lösung nicht ausgefroren werden.
- 18 A. Kühn, Ch. Burschka und H. Werner, Organometallics, 1 (1982) 496.
- 19 D.M.P. Mingos, P.C. Minshall, M.B. Hursthouse, K.M.A. Malik und S.D. Willoughby, J. Organometal. Chem., 181 (1979) 169.
- 20 L.F. Dahl und C.H. Wei, Inorg. Chem., 2 (1963) 713.
- 21 T. Madach, K. Fischer und H. Vahrenkamp, Chem. Ber., 113 (1980) 3235.
- 22 W. Porzio und M. Zocchi, J. Am. Chem. Soc., 100 (1978) 2048, zit. Lit.
- 23 L.R. Byers und L.F. Dahl, Inorg. Chem., 19 (1980) 277.
- 24 R. Hoffmann, J. Chem. Phys., 39 (1963) 1397; R. Hoffmann und W.N. Lipscomb, J. Chem. Phys., 36 (1962) 2179; 37 (1962) 2872.
- 25 Siehe hierzu: R. Hoffmann, Science, 211 (1981) 995, zit. Lit.
- 26 T.A. Albright, P. Hofmann und R. Hoffmann, J. Am. Chem. Soc., 99 (1977) 7546; T.A. Albright und R. Hoffmann, Chem. Ber., 111 (1978) 1578; T.A. Albright, R. Hoffmann, Y. Tse und T. D'Ottavio, J. Am. Chem. Soc., 101 (1979) 3812; T.A. Albright, Acc. Chem. Res., 15 (1982) 149.
- 27 R. Hoffmann, Angew. Chem., 94 (1982) 725; Angew. Chem. Int. Ed. Engl., 21 (1982) 711.
- 28 P. Hofmann, Angew. Chem., 89 (1977) 551; Angew. Chem. Int. Ed. Engl., 16 (1977) 536; D.M.P. Mingos und M.I. Forsyth, J. Organometal. Chem., 146 (1978) C37; D.M.P. Mingos, J. Chem. Soc., Dalton Trans., (1977) 602; J.K. Burdett, J. Chem. Soc., Faraday Trans. 2, 70 (1974) 1599.
- 29 Der Einfachheit halber verwenden wir s, x, y, z, $x^2 y^2$ etc. statt 5s, $5p_x$, $5p_y$, $5p_z$, $4d_{x^2-y^2}$ etc.
- 30 Positive (negative) Werte der Wellenfunktion als ausgezogene (gestrichelte) Linien. Die Konturlinien entsprechen Werten von ±0.4, ±0.2, ±0.1, ±0.05, ±0.025, ±0.0125, ±0.005.
- 31 Die energetisch hochliegenden MOs $3\pi_a$ und $3\pi_a$ des Cyclopentadienylanions spielen keine Rolle.

- 32 J.K. Burdett, Molecular Shapes, Wiley, N.Y., 1980, S.216 ff.
- 33 Natürlich entspricht die Klassifizierung als Vierelektronen-Donor einer rein formalen Zählweise; die MO-Theorie braucht diese Begriffe nicht, da die Rechnung das Ausmass des Elektronentransfers in Bruchteilen der Elektronendichte direkt wiedergibt.
- 34 Zu den Verhältnissen für ein (μ-X)Pd₂L₂⁺-Fragment in bimetallischen Halbsandwichmolekülen siehe: P. Hofmann, R. Hoffmann und P.A. Dobosh, in Vorbereitung; auszugsweise veröffentlicht in H. Werner, Adv. Organometal. Chem., 19 (1981) 155; P. Hofmann, Chemiedozententagung 1982, Kaiserslautern.
- 35 Vgl. hierzu eine Analyse der Bindungsverhältnisse bei Carbaplatinaboranen sowie bei Hexadienyl-Komplexen: M.J. Calhorda, D.M.P. Mingos und A.J. Welch, J. Organometal. Chem., 228 (1982) 309; D.M.P. Mingos und C.R. Nurse, J. Organometal. Chem., 184 (1980) 281.
- 36 J.H. Ammeter, H.-B. Bürgi, J.C. Thibeault und R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 7240.
- 37 H. Felkin und G.K. Turner, J. Organometal. Chem., 129 (1977) 429.
- 38 J. Powell und T. Jack, Inorg. Chem., 11 (1972) 1039.